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The random triangle model on a graph G, is a random graph model where the
usual i.i.d. measure is perturbed by a factor q t(w), where q \ 1 is a constant, and
t(w) is the number of triangles in the random subgraph w. Here we consider the
case where G is the usual two-dimensional triangular lattice, for which there
exists a percolation threshold pc(q) such that the probability of getting an infi-
nite connected component of retained edges is 0 for p < pc(q), and 1 for
p > pc(q). It has previously been shown that pc(q) is a decreasing function of q.
Here we strengthen this by showing that pc(q) is strictly decreasing. This con-
firms a conjecture by Häggström and Jonasson.
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1. INTRODUCTION

In the standard random graph model, each edge of a graph G=(V, E) is
removed independently with the same probability 1−p, for some p ¥ (0, 1).
Motivated by the transitivity phenomenon in social networks (friends of
friends are often friends as well), Jonasson (7) generalized this to obtain the
so-called random triangle model. This model arises by biasing the product
measure in the i.i.d. model by a factor q t(w), where q \ 1 is a constant, and
t(w) is the number of triangles in the subgraph w of G. The focus in ref. 7
is on the case where G is the complete graph. Häggström and Jonasson (5)

instead considered the case where G is the two-dimensional triangular
lattice (denoted T) which is also the case we consider in this paper.

Because the graph we are dealing with is infinite, the definition of the
random triangle model becomes less straightforward than in the finite case.



The definition in ref. 5 uses the so-called DLR (Dobrushin–Lanford–
Ruelle) approach to infinite-volume Gibbs measures. The details of this are
deferred to Section 2.

As in ref. 5, we are interested in the percolation-theoretic question of
whether the random triangle model on T produces an infinite connected
component of retained edges. The answer turns out to depend on the param-
eters p and q in a manner described in the following result from ref. 5.

Theorem 1.1 (Häggström and Jonasson). There exists a function
pc : [1,.)Q [0, 1] such that any Gibbs measure for the random triangle
model on T with parameters p ¥ (0, 1) and q \ 1 produces an infinite con-
nected component with probability

30 if p < pc(q)

1 if p > pc(q) .

The function pc(q) satisfies

pc(q)=˛2 sin 1
p

18
2 for q=1

(q−1) −2/3 for q \ 27+15`3.

Furthermore, the function is continuous and decreasing throughout [1,.).

(The fact that pc(1)=2 sin( p18) goes back to Wierman.
(9)) Regarding

the behavior of pc(q) on (1, 27+15`3), nothing else beyond continuity
and decreasingness was obtained in ref. 5. Note that Theorem 1.1 precludes
the possibility that the formula pc(q)=(q−1) −2/3 extends throughout that
interval. It was conjectured in ref. 5 that pc(q) is strictly decreasing, and the
purpose of this note is to prove that conjecture.

Theorem 1.2. The function pc(q), as defined in Theorem 1.1, is
strictly decreasing throughout the interval [1, 27+15`3].

Some related strict inequalities for other models have been obtained
(using other, less elementary, methods), e.g., by Aizenman and Grimmett (1)

and Bezuidenhout, Grimmett and Kesten. (2)

In the next section, we give a more precise description of the model.
After some preliminaries on stochastic domination in Section 3, we prove
our main result (Theorem 1.2) in Section 4. Finally, in Section 5, we mention
some extensions of the result.

472 Häggström and Turova



2. THE MODEL

The triangular lattice T=(V, E) is defined as the graph with vertex set

V=3 (x, y) ¥ R2 : x ¥ Z,
y

`3
¥ Z4 2 3 (x, y) ¥ R2 : x−

1
2
¥ Z,

y

`3
−
1
2
¥ Z4 ,

and edge set E consisting of pairs Ou, vP of vertices at Euclidean distance 1
from each other. A subset of E is identified in the natural way with an
element of {0, 1}E.

We use the DLR approach (see, e.g., ref. 3 for a general introduction)
to defining the random triangle model on T. That is, we consider a proba-
bility measure on {0, 1}E to be a Gibbs measure for the random triangle
model if it satisfies a certain set of desired conditional distributions on
finite subsets of E. For p ¥ (0, 1), q \ 1, a finite subset S of E, and an edge
configuration g ¥ {0, 1}E0S, we define mp, qS, g as the probability measure on
{0, 1}S which to each t ¥ {0, 1}S assigns probability

mp, qS, g(t)=
1

Zp, q
S, g

q tS(tKg) D
e ¥ S

pt(e)(1−p)1−t(e) (1)

Here (tKg) ¥ {0, 1}E is the configuration which agrees with t on S and
with g on S0E, tS(tKg) is the number of triangles in (tKg) that have at
least one edge in S, and Zp, q

S, g is a normalizing constant.

Definition 2.1. A probability measure m on {0, 1}E is said to be a
Gibbs measure for the random triangle model on T with parameters
p ¥ (0, 1) and q \ 1 if it admits conditional probabilities such that a {0, 1}E-
valued random object Y with distribution m has the following property: For
every finite S … E and every g ¥ {0, 1}E0S, the conditional distribution of
Y(S), given the event {Y(E0S)=g}, equals mp, qS, g.

For the set of parameter values we are interested in, i.e.,
q ¥ [1, 27+15`3], it was shown in ref. 5 that the random triangle model
on T with parameters p and q has a unique Gibbs measure; we denote this
Gibbs measure by mp, qT . (For q > 27+15`3, it was shown that there is a
unique Gibbs measure for p ] (q−1) −2/3, and multiple Gibbs measures for
p=(q−1) −2/3.)

Note that the random triangle model exhibits the following Markov
random field property. For a finite S … E, define “S to be the set of edges
in E0S that share some triangle with some edge in E. We then have, for
any {0, 1}E-valued random object X distributed according to a Gibbs
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measure for the random triangle model, any t ¥ {0, 1}S and any
g ¥ {0, 1}E0S, that

P(X(S)=t | X(E0S)=g)=P(X(S)=t | X(“S)=g(“S)).

This is immediate from (1) and Definition 2.1.
For a vertex x ¥ V, define the edge set Tx as

Tx=3Ox, x+(1, 0)P, 7x, x+11
2
,
`3

2
28, 7x+11

2
,
`3

2
2 , x+(1, 0)84 , (2)

and note that {Tx}x ¥ V is a partitioning of E into triangles. We will need an
increasing sequence of finite edge sets L1 … L2 … ... converging to E in the
sense that each edge e ¥ E is in all but finitely many of the Li’s. For
concreteness, we take (somewhat arbitrarily)

Ln= 0
x ¥ V

|x| [ n

Tx

where |x| is Euclidean norm. The fact that mp, qT is the unique Gibbs measure
for the random triangle model with given parameter values, implies that
mp, qLn, gn converges in distribution to m

p, q
T , for any sequence of boundary con-

ditions gn.

3. STOCHASTIC DOMINATION

The concept of stochastic domination will play a leading role in our
proof of Theorem 1.2. We begin with some basic definitions. Let S be a
finite or countable set. For two configurations t, tŒ ¥ {0, 1}S, we write
tQ tŒ if t(s) [ tŒ(s) for all s ¥ S. A function f: {0, 1}SQ R is said to be
increasing if f(t) [ f(tŒ) whenever tQ tŒ. An event A ı {0, 1}S is said to
be increasing if its indicator function is increasing. We say that A is non-
trivial if A ¨ {”, {0, 1}S}. Write AS for the class of increasing events in
{0, 1}S, and writeAg

S for the class of nontrivial increasing events in {0, 1}
S.

For two probability measures m and mŒ on {0, 1}S, we say that mŒ
stochastically dominates m, writing mQd mŒ, if

F
{0, 1}S

f dm [ F
{0, 1}S

f dmŒ (3)

for all bounded increasing functions f: {0, 1}SQ R. By a well-known
theorem of Strassen (see, e.g., ref. 8), this is equivalent to the existence of
two {0, 1}S-valued random objects X and XŒ defined jointly on the same
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probability space, with the properties that X has distribution m, XŒ has
distribution mŒ, and

P(XQXŒ)=1.

A common tool for proving stochastic domination and monotonicity is
Holley’s Theorem (see ref. 3 for an extensive discussion):

Theorem 3.1 (Holley). Let S be finite, and let m and mŒ be proba-
bility measures on {0, 1}S that assign positive probability to all elements of
{0, 1}S. Suppose that for all s ¥ S and all t, tŒ ¥ {0, 1}S0{s} such that tQ tŒ,
we have

m(X(s)=1 | X(S0{s})=t) [ mŒ(XŒ(s)=1 | X(S0{s})=tŒ).

Then mQd mŒ.

This theorem was applied in ref. 5, to prove, among others, the
following result for the random triangle model. Recall the definition of mp, qS, g
in (1).

Proposition 3.2 (Häggström and Jonasson). Let S … E be finite,
and let g, gŒ ¥ {0, 1}E0S be configurations satisfying gQ gŒ. Then, for any
p ¥ (0, 1) and q \ 1, we have

mp, qS, gQd m
p, q
S, gŒ.

More generally, if p [ pŒ and q [ qŒ, we have

mp, qS, gQd m
pŒ, qŒ
S, gŒ . (4)

By taking p=pŒ, q [ qŒ, S=Ln and taking limits as nQ., the decreas-
ingness statement concerning pc(q) in Theorem 1.1 is easily obtained.
However, to prove strict decreasingness of pc(q), one needs to prove (4)
for values of p, pŒ, q and qŒ that are not covered by Proposition 3.2; see
Proposition 4.3 in the next section. In fact, Proposition 4.3 cannot be
obtained by direct application of Holley’s Theorem. Instead, we shall use
the following generalization of Holley’s Theorem, where the single-edge
conditional distribution assumption is replaced by an analogous assump-
tion for triangles.

Proposition 3.3. Suppose that p, pŒ ¥ (0, 1) and q, qŒ \ 1 are chosen
in such a way that for any triangle T=Tx as in (2), x ¥ V, and for any
t ¥ {0, 1}E0T we have

mp, qT, tQd m
pŒ, qŒ
T, t . (5)
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Then

mp, qLn, gQd m
pŒ, qŒ
Ln, g (6)

for any n and any g ¥ {0, 1}E0Ln.

Proof. We shall exploit a similar Markov chain coupling idea as in
the standard dynamical proof of Holley’s Theorem (see ref. 3). Let
p, pŒ, q, qŒ, n and g be as in the proposition.

We can define a {0, 1}Ln-valued Markov chain {Yk}
.

k=0 as follows.
First pick the initial configuration Y0 ¥ {0, 1}Ln according to m

p, q
Ln, g. Then,

for each k, Yk+1 is obtained from Yk by picking a triangle (as in (2)) Tk … Ln
at random (according to uniform distribution and independent for different
values of k), setting Yk+1(e)=Yk(e) for all e ¥ Ln 0Tk, and picking Yk+1(Tk)
according to the conditional distribution mp, qTk, (Yk(Ln0Tk)Kg). It is easy to see
that this transition rule (which is a special case of the well-known Gibbs
sampler) preserves the initial distribution mp, qLn, g.

Analogously, define the Markov chain {Y −k}
.

k=0 as follows. First pick
YŒ0 ¥ {0, 1}Ln according to m

pŒ, qŒ
Ln, g. Then YŒk+1 is obtained from Y −k by picking

a triangle Tk … Ln at random (again uniformly and independent for differ-
ent values of k), setting YŒk+1(e)=Y −k(e) for all e ¥ Ln 0T

k, and picking
YŒk+1(Tk) according to mpŒ, qŒTk, (YŒk(Ln0T

k)Kg). This transition mechanism preser-
ves the initial distribution mpŒ, qŒLn, g.

Our next aim is to describe how the chains {Yk}
.

k=0 and {Y −k}
.

k=0

should be run jointly (coupled) on the same probability space. For any
T=Tx … Ln and any t, tŒ ¥ {0, 1}Ln0Ex, we define a probability measure
PT, t, tŒ on {0, 1}T×{0, 1}T satisfying the following properties:

(i) The first and second marginals of PT, t, tŒ equal m
p, q
T, (tKg) and

mpŒ, qŒT, (tŒKg), respectively.
(ii) For all t and tŒ such that tQ tŒ, the measure PT, t, tŒ puts all of its

probability mass on the set

{(z, zŒ) ¥ {0, 1}T×{0, 1}T : zQ zŒ}.

Property (i) is what makes PT, t, tŒ a coupling of m
p, q
T, (tKg) and m

pŒ, qŒ
T, (tŒKg). Prop-

erty (ii) is our key use of the assumption (5). To see that a coupling satisfy-
ing (i) and (ii) exists, note that for tQ tŒ we have

mpŒ, qŒT, t Qd m
pŒ, qŒ
T, tŒ
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as a special case of Proposition 3.2. This, in combination with the assump-
tion (5), implies that

mp, qT, tQd m
pŒ, qŒ
T, tŒ

so that, by Strassen’s Theorem, the desired coupling exists.
The chains {Yk}

.

k=0 and {Y −k}
.

k=0 can now be run jointly as follows.
First take the initial values Y0 and YŒ0 to be independent. Then synchronize
the evolution of the two chains by letting, at each time k, the two chains
pick the same triangle Tk to update. The pair (Yk+1(Tk), Y −k+1(T

k)) is
chosen according to the probability measure PTk, (Yk(Ln0Tk)Kg), (Y −k(Ln0Tk)Kg). It is
easy to see that this gives the correct marginal behavior for each of the two
chains. By property (ii), we also have that if YK Q Y −K for some K, then this
ordering is preserved, i.e., Yk Q Y −k for all k \K. If we now take K to be the
smallest k for which Y −k takes its maximal value (i.e., Y

−

k(e)=1 for all
e ¥ Ln), then K is finite a.s., due to irreducibility of the chain {Y −k}

.

k=0.
Clearly, YK Q Y −K holds for that choice of K, and we can conclude that

lim
kQ.

P(Yk Q Y −k)=1.

Hence, the limiting distribution as kQ. of the pair (Yk, Y
−

k) is a coupling
which (by Strassen’s Theorem) establishes (6). L

4. PROOF OF MAIN RESULT

The key lemma, which will provide us with (5) in Proposition 3.3, is
the following.

Lemma 4.1. Let T=Tx be any triangle as in (2). For any p ¥ (0, 1),
any q \ 1 and any e > 0, we can find a d > 0 such that the following holds.
For any t ¥ {0, 1}E0T, we have

mp, qT, tQd m
p−d, q+e
T, t . (7)

Proof. Enumerate the edges of T as {e1, e2, e3}, and the edges of “T
as 13

i=1 {e
1
i , e

2
i}, where for each i the set {ei, e

1
i , e

2
i} forms a triangle. Also

set Di=t(e
1
i) t(e

2
i) for i=1, 2, 3. By direct application of the definition (1),

we have that the measure mp, qT, t assigns probability

mp, qT, t(z)=
(1−p)3

Zp, q
T, t

qz(e1) z(e2) z(e3) D
3

i=1

1 pqDi
1−p
2z(ei) (8)

to each z ¥ {0, 1}T.
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We next define an auxiliary probability measure m̃p, q, q̃T, t on {0, 1}T with
the extra parameter q̃ \ 1. For each z ¥ {0, 1}T, set

m̃p, q, q̃T, t (z)=
(1−p)3

Z̃p, q, q̃
T, t

q̃z(e1) z(e2) z(e3) D
3

i=1

1 pqDi
1−p
2z(ei), (9)

where of course Z̃p, q, q̃
T, t is another normalizing constant. Note that by setting

q̃=q in (9), we simply recover mp, qT, t. Note also that m
p, q
T, t and m̃

p, q, q̃
T, t depend

on t only through D1, D2 and D3.
Now take e > 0 as in the lemma, and let B … {0, 1}T be the event that

all three edges in T are present. Our preliminary aim is to compare mp, qT, t(B)
and m̃p, q, q+eT, t (B). A direct calculation using (8) and (9) gives

mp, qT, t(B) m̃
p, q, q+e
T, t ( ¬ B)

mp, qT, t( ¬ B) m̃
p, q, q+e
T, t (B)

=
q

q+e
< 1.

Hence

mp, qT, t(B)
mp, qT, t( ¬ B)

<
m̃p, q, q+eT, t (B)
m̃p, q, q+eT, t ( ¬ B)

,

so that

mp, qT, t(B) < m̃
p, q, q+e
T, t (B). (10)

Now let A ¥Ag
T be a nontrivial increasing event in {0, 1}

T, and note that
¬ A ı ¬ B for any such A. Another direct application of (8) and (9) gives
that

m
p, q
T, t(z)

m̃
p, q, q+e
T, t (z)

is the same for all z ¥ ¬ B. This implies that

mp, qT, t( ¬ A)
mp, qT, t( ¬ B)

=
m̃p, q, q+eT, t ( ¬ A)
m̃p, q, q+eT, t ( ¬ B)

.

Using (10), we therefore get that

mp, qT, t(A) < m̃
p, q, q+e
T, t (A) (11)

for all t and all A ¥Ag
T. Now, the right hand side of (11) is of course con-

tinuous in p, so the inequality still holds with p−d in place of p in the right
hand side, for some sufficiently small d > 0. Since there are only finitely
many A ¥Ag

T, and effectively only finitely many boundary conditions t
(because t only influences the probabilities via (D1, D2, D3)), we can in fact
find a d > 0 such that, uniformly in t and A ¥Ag

T, we have

mp, qT, t(A) [ m̃
p−d, q, q+e
T, t (A). (12)
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Trivially, the same holds for all t and all A ¥AT. Now we can show that
mp, qT, t is stochastically dominated by m̃

p−d, q, q+e
T, t . Indeed, let f be any increas-

ing function from {0, 1}T to R. Clearly, f takes only finitely many values,
say a0 < a1 < · · · < am. For k=1, ..., m, define the event

Ak={w ¥ {0, 1}T : f(w) \ ak},

which allows us to rewrite >{0, 1}Tf dmp, qT, t as

F
{0, 1}T

f dmp, qT, t=a0+C
m

k=1
(ak−ak−1) m

p, q
T, t(Ak),

and similarly for >{0, 1}T dm̃p−d, q, q+eT, t . The events A1, ..., Ak are of course
increasing, so that, using (12), we get

F
{0, 1}T

f dm̃p−d, q, q+eT, t −F
{0, 1}T

f dmp, qT, t

=C
m

k=1
(ak−ak−1)(m̃

p−d, q, q+e
T, t (Ak)−m

p, q
T, t(Ak))

\ 0,

and (3) is verified with m=mp, qT, t and mŒ=m̃
p−d, q, q+e
T, t . We have thus

established that

mp, qT, tQd m̃
p−d, q, q+e
T, t . (13)

By an application of Holley’s Theorem (we omit the trivial calculations of
single-edge conditional probabilities needed to check that the conditions in
the theorem are fulfilled), we furthermore get

m̃p−d, q, q+eT, t Qd m
p−d, q+e
T, t . (14)

By combining (13) and (14), we get (7), as desired. L

Closely similar to Lemma 4.1 is the next result, where we decrease
(rather than increase) q by e.

Lemma 4.2. Let T=Tx be any triangle as in (2). For any p ¥ (0, 1),
any q > 1 and any e > 0, we can find a d > 0 such that the following holds.
For any t ¥ {0, 1}E0T, we have

mp, qT, tR dm
p+d, q− e
T, t .
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Proof. Follows by a completely straightforward modification (basi-
cally just the reversal of a few of the inequalities) of the proof of Lemma 4.1.

L

We now move on from considering a single triangle T, to larger
subgraphs.

Proposition 4.3. For any n, g ¥ {0, 1}E0Ln, p ¥ (0, 1) and q > 1 we
have the following.

(i) For any e > 0, there exists a d > 0 such that mp, qLn, gQd m
p−d, q+e
Ln, g .

(ii) For any e > 0, there exists a d > 0 such that mp, qLn, gR dm
p+d, q− e
Ln, g .

Proof. Part (i) follows by applying Proposition 3.3 with pŒ=p−d
and qŒ=q+e, where e and d are as in Lemma 4.1. Similarly, part (ii)
follows by combining Lemma 4.2 and Proposition 3.3. L

In the next result, we let a(p, q) denote the mp, qT -probability of having
an infinite connected component of retained edges.

Corollary 4.4. For any p ¥ (0, 1) and q ¥ (1, 27+15`3) we have
the following.

(i) For any e > 0, there exists a d > 0 such that a(p, q) [
a(p−d, q+e).

(ii) For any e > 0, there exists a d > 0 such that a(p, q) \
a(p+d, q− e). L

Proof. It is known (see, e.g., Corollary 4.7 in ref. 3) that the
stochastic domination is preserved under weak limits. Hence, taking limits
nQ. in Proposition 4.3 (i) we have mp, qT Qd m

p−d, q+e
T , where e and d are as

in the cited proposition. Therefore

mp, qT (, an infinite connected component)

[ mp−d, q+eT (, an infinite connected component),

because the existence of an infinite connected component is an increasing
event. Part (i) of the corollary is therefore established. Part (ii) follows
similarly. L

Proof of Theorem 1.2. Suppose, for the sake of deriving a contradic-
tion, that pc(q) fails to be strictly decreasing somewhere on [1, 27+15`3].
By Theorem 1.1, there then exists a closed interval [q1, q2] … [1, 27+
15`3], with q1 < q2, on which pc(q) is constant. Set qg=

q1+q2
2 and
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pg=pc(qg). Since mp
g, qg

T is the unique Gibbs measure for the random
triangle model with the given parameter values, we have by general Gibbs
theory that mp

g, qg

T has a trivial tail, so that in particular a(pg, qg) ¥ {0, 1}.
Suppose that a(pg, qg)=1. Then, by Corollary 4.4 (i), we have

a(pg−d, q2)=1 for some d > 0. Hence, pc(q2) [ pg−d < pg=pc(qg),
which contradicts the constancy of pc(q) on [q1, q2].

We can therefore conclude that a(pg, qg)=0. But Corollary 4.4 (ii)
now gives us that a(pg+d, q1)=0 for some d > 0. This implies that
pc(q1) \ pg+d > pg=pc(qg), and we again have a contradiction to the
constancy of pc(q) on [q1, q2]. This completes the proof. L

5. SOME EXTENSIONS

The main idea in our proof was to use a Holley-type inequality whose
monotonicity assumption concerns not the conditional distribution of a
single variable, but that of a larger (but still managable) set of variables.
We hope that the usefulness of this idea is not limited to the particular
setting of the present paper. Here we mention a couple of modest exten-
sions of Theorem 1.2, for which the proof can immediately be adapted.

1. Rigidity Percolation

Very few properties of the event

Aconn={, an infinite connected component}

were actually used in our proof. The key properties were that it is increas-
ing, and that it has a nontrivial threshold pc(q). Another event of this type,
that has received some attention recently, is

Arig={, an infinite rigid component}.

See, e.g., Holroyd (6) or Häggström (4) for the definition of rigid components.
For i.i.d. bond percolation on T, it was shown in ref. 6 that there is a criti-
cal value pr, satisfying pc(1) < pr < 1, such that P(Arig) is 0 or 1 depending
on whether p is below or above pc. Using Holley’s Theorem, it is easy to
extend this to the random triangle model and show that the mp, qT -
probability of having an infinite rigid component is 0 or 1 depending on
whether p is below or above pr(q), where pr(q) is a continuous and
decreasing function of q. The methods of the present paper show that pr(q)
is strictly decreasing.
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2. The Random Square Model

To consider the random triangle model on the square lattice Z2 (with
edges connecting Euclidean nearest neighbors) is of course pointless,
because Z2 contains no triangles. In ref. 5, it was instead suggested to con-
sider a random square model on Z2, where, in the defining formula
analogous to (1), we take q raised to the number of squares rather than
triangles. Again, arguments based on Holley’s Theorem imply the existence
of a continuous and decreasing function pc(q) such that the probability of
having an infinite connected component is 0 if p < pc(q) and 1 if p > pc(q),
and again our methods can easily be adapted to show that pc(q) is strictly
decreasing.
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